If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81t^2-100=-91
We move all terms to the left:
81t^2-100-(-91)=0
We add all the numbers together, and all the variables
81t^2-9=0
a = 81; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·81·(-9)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54}{2*81}=\frac{-54}{162} =-1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54}{2*81}=\frac{54}{162} =1/3 $
| x*0.7=2142857.15 | | 6-1/3(x+4)=11 | | -3(2x-7)=66 | | 4a+7-2a=19 | | 2/11x+2/9=1/2-9/11x=-4 | | -3x-3(2x+13)=33 | | 3x-35+2x+5=180 | | 5+18m+18=9+19m | | -12x+8=-5x+29 | | 9x+1=3x+0 | | (2x/40)+(2x/60)=1 | | 2x-8=2x-1/2 | | 126=-6x-3(4x-6) | | 16+1/4x=3/4x | | 2x-8=2-1/2x | | 6x+17=9x-8 | | 2x-8=2-1/2 | | 9x+1=2x+0 | | (40/2x)+(60/2x)=1 | | 6p+21=45 | | 150m-75m+53625=56100-200m | | 18-15=2x/5+7x/15= | | 15m=m+42 | | -20x+5-11=8-6x | | -2a+27+7a=4a-8a | | 18-15=2x/5+7x/15 | | 1/5×(25-5a)=4-a | | -4(r+9)=-69 | | 2h/6-6=2/3 | | -33=-7w+5(w-3) | | 5x+9=7x+8 | | -162=6x-3(-5x-16) |